Cancer Cell Lines Characterization of Bile Salt-induced Apoptosis in Colon
نویسندگان
چکیده
Bile salts have been shown to be involved in the etiology of colorectal cancer. Although there is a large body of evidence for bile salts as a cocarcinogen in azoxymethane-induced colorectal cancer, bile salt-induced apoptosis of colorectal cancer cells has not yet been studied in detail. Therefore, we investigated the effects of different bile salts on apoptosis and apoptotic signaling in colon cancer cell lines. Incubation of colorectal cancer cell lines with physiological concentrations of deoxycholic acid led to a dramatic induction of apoptosis. Caspase cleavage and caspase activation occurred as early as 30 min after the addition of deoxycholate. Caspase-2 (Ich-1, Nedd2), caspase-3 (CPP-32, YAMA, Apopain), caspase-7 (Mch-3, ICE-LAP-3), and caspase-8 (FLICE, Mach-1, Mch5) are activated in HT-29, whereas caspase-1 (ICE) remained intact. Caspase activation and cellular apoptosis induced by bile salts were reversed by broad spectrum and selective caspase inhibitors. As opposed to hepatocyte death mediated by bile acids, CD95 was not involved in deoxycholate-induced apoptosis. The cytoprotective effect of ursodeoxycholic acid in hepatocytes or other tumor cell lines, which is mediated by inhibiting the mitochondrial permeability transition, was not observed in colon cancer cell lines as well. This points to distinct intracellular functions of ursodeoxycholate in different cancer cell types. Here we describe the specificity of bile salt-induced apoptosis in colon cancer cell lines. Differences from hepatocytes are shown. Bile acidspecific caspase activation is part of the apoptotic pathway induced by bile salts in colon cancer cell lines. Furthermore, a lack of cytoprotective function of ursodeoxycholate in these cells is demonstrated. Our data raise questions as to the role of bile salts in colorectal carcinogenesis.
منابع مشابه
Characterization of bile salt-induced apoptosis in colon cancer cell lines.
Bile salts have been shown to be involved in the etiology of colorectal cancer. Although there is a large body of evidence for bile salts as a cocarcinogen in azoxymethane-induced colorectal cancer, bile salt-induced apoptosis of colorectal cancer cells has not yet been studied in detail. Therefore, we investigated the effects of different bile salts on apoptosis and apoptotic signaling in colo...
متن کاملPossible Involvement of a Specific Cell Surface Receptor for Calprotectin-Induced Apoptosis in Colon Adenocarcinoma and Carcinam Cell Lines (SW742 and HT29/219)
Calprotectin, a calcium-bound protein complex, is abundant in the cytosol of neutrophils. It has been reported that this protein has an apoptotic activity in tumor cells. Since calprotectin increases in colorectal cancer, this study was conducted to investigate, for the first time, the cytotoxicity/apoptotic effect of calprotectin on HT29/219 and SW742 colon carcinoma and adenocarcinoma cell li...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملComparison of Cytotoxic Activity of Bile on HepG2 and CCRF-CEM Cell Lines: An in Vitro Study
The aim of this study was to examine the effect of crude bile on the human HepG2 and CCRF-CEM cell lines. Cells were exposed to different dilutions of bile. Antiproliferative effects were determined by the cytotoxic MTT assay. Cells undergoing apoptosis were identified by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Bile administration resulted in dose-dependent c...
متن کاملDevelopment and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate.
Evidence from live cell bioassays shows that the flat mucosa from patients with colon cancer exhibits resistance to bile salt-induced apoptosis. Three independent cell lines derived from the colonic epithelial cell line HCT-116 were selected for resistance to bile salt-induced apoptosis. These cell lines were developed as tissue culture models of apoptosis resistance. Selection was carried out ...
متن کامل